Как правило, при самостоятельном проектировании вентиляционной системы люди не любят особо усложнять задачу и подбирают размеры что называется наугад. Обычно диаметр с запасом и на работе вентиляции это не особо сказывается, но такой подход инженерам не к лицу. Не лишним будет знать, как правильно нужно подбирать вентиляционные трубы.
Трубы для вентиляции
Из чего делают воздуховоды?
Для изготовления воздуховодов для вытяжки используют разные марки стали, модифицированный поливинилхлорид (ПВХ), полипропилен, стеклоткань, алюминий и металлопластик.
Из какого материала выбрать воздуховоды, зависит от размеров и назначения конкретного помещения или здания и проекта вентиляционной системы.
Пластик: плюсы и минусы материала
Пластиковые воздуховоды всё чаще используются для устройства вентиляции, уверенно вытесняя жестяные трубы. Они обладают отличными эксплуатационными качествами:
- высокой герметичностью;
- устойчивостью к воздействию химических веществ;
- стойкостью к ультрафиолетовому излучению;
- экологической чистотой;
- не меняют своих качеств при температурах в диапазоне от 0ºС до +85ºС;
- легко режутся и монтируются;
- просты в уходе — отлично чистятся и моются любым бытовым средством;
- абсолютно не подвержены коррозии;
- широким ассортиментом типоразмеров профиля и толщины стенки;
- износоустойчивостью;
- хорошей звукоизоляцией;
- низкой сопротивляемостью воздуху, благодаря гладкости внутренних поверхностей;
- небольшим весом и ценой.
Однако трубы для вентиляции из пластика имеют низкую стойкость к воздействию механических ударных нагрузок и слабую огнестойкость, поэтому не применяются для устройства дымохода.
Металлические воздуховоды: плюсы и минусы материала
Металлические воздуховоды более прочные и огнеупорные, чем пластиковые, обладают достаточной стойкостью к коррозии, механическому воздействию, устойчивостью к агрессивным средам, перепадам температур и долговечны в использовании.
Минусами металлических воздуховодов являются:
- большой вес, а значит их труднее крепить и соединять;
- они более шумные;
- обладают шероховатой внутренней поверхностью;
- способные накапливать статическое электричество;
- стальные трубы — подвержены коррозии, а из алюминия и нержавейки — слишком дорогие.
Технология производства металлических труб
В качестве заготовок для изготовления жёстких стальных вентиляционных рукавов используют в основном тонкие листы чёрной, гальванизированной, оцинкованной, нержавеющей стали или алюминия. Производятся металлическая воздухозаборная труба по двум принципиально отличным друг от друга технологиям.
- Для изготовления прямошовного воздуховода развёртку вырезают на гильотинных станках из листа стали. Затем её в холодном состоянии гнут по всей длине с помощью профилегибочного станка, образуя замкнутый контур. Края соединяют сваркой или фальцевым соединением;
- Спирально — навивная технология предусматривает использование металлического штрипса (ленты), который свивается на специальных станках в жёсткую трубу. Станки укомплектованы набором матриц, позволяющих выпускать изделия с различной толщиной стенки и диаметром.
Гофрированная труба: плюсы и минусы материала
Гибкие гофрированные вентиляционные трубы представляют собой каркас из жёсткой стальной проволоки, свитой спиралью, который снаружи и изнутри покрыт гофрированной фольгой или полиэфирной тканью. Они просты в сборке, ремонте и транспортировке. Такой воздуховод можно многократно сгибать в любую сторону и растягивать. Фольгированная гофротруба выдерживает нагрев до +140ºС, тканевые — не выше +90ºС.
Гофрированная труба из стали или алюминия по степени гибкости относится к группе полужёстких материалов. Из неё получается достаточно прочные и лёгкие воздухопроводы. Они характеризуются:
- огнестойкостью;
- герметичностью;
- износостойкостью;
- высокой технологичностью;
- ремонтопригодностью;
- небольшим весом;
- способностью не накапливать статическое электричество;
- их не нужно заземлять;
- диапазон рабочих температур алюминиевых гофротруб — от −35ºС до +270ºС;
- стальные гофротрубы более жаростойкие и выдерживают нагрев до +900ºС;
- стойкостью к длительному воздействию ультрафиолета;
- экономичностью. Гибкие гофрированные трубы для вентиляции могут растягиваться и изгибаться под углом, что позволяет сэкономить на приобретении фитингов.
Однако существует ряд запретов на использование алюминиевой гофрированной трубы:
- алюминий не выдерживает слишком высокие температуры и может расплавиться;
- гофрированная внутренняя поверхность создаёт препятствие движению воздуха, снижает его скорость и вызывает шум.
Сечение и размеры
Выбор размеров сечения должен основываться на нормативном значении скорости движения потока. Так для жилых домов этот показатель в ответвлениях составляет 4 м/с, для зданий общественного пользования — 5 м/с, производственного назначения — 9 м/с. При других скоростях гул в системе будет мешать людям.
Стандартные размеры согласно ВСН 353-86 и СНиП 41-01-2003 составляют:
- для круглых воздуховодов: 100, 125, 160, 200, 250, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800 и 2000 мм;
- для прямоугольных и квадратных воздуховодов длины стенок в поперечном сечении варьируются от 100 мм до 3200 мм.
Какие лучше, круглые или прямоугольные?
Выбор применения круглых или прямоугольных воздуховодов для сооружения вентиляционной системы основывается на таких параметрах, как площадь здания, особенности расположения каналов и их конфигурация, требования к уровню шума в помещении.
При проектировании также учитывается температурно-влажностный режим и принятые решения по оформлению интерьера. В прямоугольных вентиляционных системах возможна утечка воздуха из-за использования при монтаже двух фланцев, секции круглых воздухопроводов соединяются с помощью одного фитинга, поэтому они более герметичны.
Каналы круглого сечения гораздо легче чистить, чем прямоугольного профиля, они менее шумные, но хуже смотрятся в интерьере.
Однако их труднее спрятать за элементами декора в помещении.
Соединительные элементы и фитинги
Для соединения секций воздухопроводов, подключения вентиляционного оборудования используются различные виды метизных деталей и фитингов. Перечень таких элементов состоит из:
- ниппеля — детали, предназначенной для обеспечения уплотнения соединений воздуховодов. Обычно ниппеля имеют левую и правую резьбу одновременно, что позволяет закреплять два конца труб одновременно;
- муфты — соединительный элемент воздуховодов с круглым сечением;
- отводов 30º, 45º, 60º, 90º — используются для изменения направления движения воздуха под определённым углом при обходе препятствий во время монтажа системы;
- круглого перехода — применяются для сочленения труб разного диаметра, соединения фасонных элементов с сечением круглой формы;
- тройника — детали для соединения двух ответвлений трубопроводов с магистральной линией;
- врезки круглого или прямоугольного сечения — заменяют тройник и позволяют осуществить подсоединение элементов в готовую конструкцию;
- заглушки — регулируют поток воздуха, защищают систему вентиляции от попадания инородных предметов и мусора;
- утки(отвода S — образной формы) — способствует изменению уровня воздуховодов;
- зонта круглого — защищают наружную часть воздуховода от атмосферных осадков;
- крестовины — детали для соединения под прямым углом трёх ответвлений в один общий воздуховод;
- перехода с прямоугольного сечения на круглое — применяется для соединения частей вентсистемы разного типоразмера.
Где какое сечение применяют
Модели с прямоугольной формой сечения не самый идеальный вариант для воздуховода, связано это с неудовлетворительной аэродинамикой и более сложным монтажом. Однако с их помощью можно сэкономить пространство, так как стенки трубы максимально прилегают к поверхностям без дополнительных креплений. Это преимущество ставит прямоугольные короба на первое место для обустройства вентиляции в жилых помещениях и офисах небольшой площади.
Для промышленной вентиляционной системы, под вытяжку более подходят практичные и удобные в работе воздуховоды круглой формы.
Они оказывают меньшее сопротивление воздуху, и обладают высоким уровнем жёсткости и герметичности. К тому же, круглые вытяжные трубы менее материалоёмкие, поэтому при одинаковой пропускной способности стоят дешевле, и их намного выгоднее использовать на больших объектах.
Как определить скорость в вентиляционных каналах?
Как можно судить из всего, сказанного выше, в качестве главной магистрали необходимо выбирать ту цепь последовательных отрезков сети, которая является самой протяженной; при этом нумерация должна начинаться исключительно с самого удаленного участка. Что же касается параметров каждого из участков (а к таковым относится расход воздуха, длина участка, его порядковый номер и проч.), то их также следует занести в таблицу проведения расчетов. Затем, когда с внесением будет покончено, подбирается форма поперечного сечения и определяются его – сечения – габариты.
LP/VT = FP.
Что обозначают эти аббревиатуры? Попытаемся разобраться. Итак, в нашей формуле:
- LP – это конкретный расход воздуха на выбранном участке;
- VT – это скорость, с которой воздушные массы по этому участку движутся (измеряется в метрах за секунду);
- FP – это и есть нужная нам площадь поперечного сечения канала.
Что характерно, во время определения скорости движения необходимо руководствоваться, в первую очередь, соображениями экономии и шумности всей вентиляционной сети.
Обратите внимание! По полученному таким образом показателю (речь идет о поперечном сечении) необходимо подобрать воздуховод со стандартными величинами, а фактическое его сечение (обозначается аббревиатурой FФ) должно быть максимально близким к рассчитанному ранее.
LP/ FФ = VФ.
Получив показатель требуемой скорости, необходимо рассчитать, насколько будет уменьшаться давление в системе вследствие трения о стенки каналов (для этого необходимо использовать специальную таблицу). Что же касается локального сопротивления для каждого из участков, то их следует рассчитывать по отдельности, после чего суммировать в общий показатель. Затем, суммировав локальное сопротивление и потери по причине трения, можно получить общий показатель потерь в системе кондиционирования воздуха. В дальнейшем это значение будет использоваться для того, чтобы вычислить требуемое количество газовых масс в каналах вентиляции.
Воздушно-отопительный агрегат
Ранее мы рассказывали о том что из себя представляет воздушно-отопительный агрегат, говорили о его приемуществах и сферах применения, в дополнение к этой статье советуем вам ознакомится с данной информацией
Как рассчитать диаметр и длину
Чтобы самостоятельно выполнить расчёты диаметра трубы для вытяжки необходимо знать размеры помещения и норму кратности воздухообмена в помещении. Её для жилых домов можно выбрать по таблице кратности воздухообмена:
Затем выполняют следующие расчёты:
- Вычисляют объём каждой комнаты, перемножая три её размера.
- Для определения необходимого объёма воздуха используют формулу:
- Все значения L округляют в большую сторону, так чтобы полученные цифры были кратны 5.
- Суммируют объём притока каждой комнаты.
- Нормативное значение скорости для жилых помещений определяют по таблице:
- Находят подходящий диаметр вентиляционных труб по диаграмме:
- Длину наружного участка трубы для вытяжки определяют в зависимости от её диаметра по таблице, в которой столбец слева представлен размерами ширины трубы, в ячейках указана площадь её сечения. Размер участка воздуховода, введенный наружу занимает верхнюю строчку.
Расчёт с помощью программы
Для расчёта вентиляции можно воспользоваться специальной программой. В качестве исходных данных здесь берут оптимальное значение объёма приточного воздуха, который определяется в зависимости от назначения помещения. Также в расчёте учитывается:
- средняя температура внутри и снаружи;
- геометрическая форма воздуховодов;
- материал изготовления, который имеет разную шероховатость и сопротивление потоку воздуха.
В результате программа выдаёт все необходимые размеры воздуховодов для устройства вентиляционной системы, обеспечивающую достаточную циркуляцию воздуха.
Особенности аэродинамических расчетов
Ознакомимся с общей методикой проведения такого рода расчетов при условии, если и сечение, и давление нам неизвестны. Сразу оговоримся, что аэродинамический расчет следует проводить исключительно после того, как будет определено требуемые объемы воздушных масс (они будут проходить по системе воздушного кондиционирования) и спроектировано приблизительное месторасположение каждого из воздуховодов в сети.
И дабы провести расчет, необходимо вычертить аксонометрическую схему, в которой будет присутствовать перечень всех элементов сети, а также их точные габариты. В соответствии с планом вентиляционной системы рассчитывается суммарная длина воздухопроводов. После этого всю систему следует разбить на отрезки с однородными характеристиками, по которым (только по отдельности!) и будет определен расход воздуха. Что характерно, для каждого из однородных участков системы следует провести отдельный аэродинамический расчет воздуховодов, потому что в каждом из них имеется своя скорость перемещения воздушных потоков, а также перманентный расход. Все полученные показатели необходимо внести в уже упомянутую выше аксонометрическую схему, а потом, как вы уже наверняка догадались, необходимо выбрать главную магистраль.
Последствия плохой вентиляции
Необходимость обеспечения системой вентиляции каждого жилого и производственного объекта устанавливают действующие строительные и гигиенические нормы пользования помещением. В её функции входит поддержание оптимального воздухообмена, создание благоприятного микроклимата для работы и отдыха путём снижения переизбытка тепла, влаги и загрязнений.
Длительное нахождение в помещении, где в работе системы вентиляции имеются нарушения или она рассчитана неверно, может привести к снижению иммунитета, развитию инфекционных заболеваний, возникновению болезней дыхательной системы.
Излишне влажная и тёплая среда способствует развитию болезнетворных организмов, плесени, грибковых отложений на поверхности стен, потолка и даже элементах мебели.
Производители
Долгое время лидирующую роль на российском рынке воздуховодов занимали европейские производители: польская компания VTS Clima, компании из Швеции — Systemair (Kanalflakt) и Ostberg, немецкие фирмы Wolter и Korf.
Сегодня с ними достойно соперничают российские компании Арктос, NED, Мовен, ООО «Венти» и ряд других фирм, выпускающих продукцию достойного качества, в большом ассортименте типоразмеров воздуховодов и фасонные части к ним. При этом стоимость изделий российского производства ощутимо ниже, чем европейских аналогов.
Монтаж
Монтаж металлических воздуховодов выполняют по следующей схеме:
- собирают воздуховоды в отдельные секции;
- выполняют разметку мест крепления на ограждающих конструкциях здания;
- устанавливают крепёжные элементы с помощью строительно — монтажного пистолета или сварочного оборудования;
- крепят секции в систему, используя для подвески траверсы или хомуты;
- стыкуют все части фальцевым или сварным способом соединения.
Крепление к стене и потолку
Воздуховоды крепят к стене или потолку, то есть в вертикальном или горизонтальном положении. В зависимости от положения участка системы, материала базовой конструкции и размеров канала при монтаже применяют разные крепёжные элементы: Z- образные и L — образные профили.
Например, для крепления к кирпичным стенам или к железобетонным поверхностям горизонтальных участков используют кронштейны угловой формы с отверстием на одном конце для подвески. Между выступающей частью кронштейна и стеной устанавливается резиновый уплотнитель, обеспечивающий плотность прилегания и снижающий шум от вибрации. Длина самого кронштейна зависит от размера и веса вентканала.
Установка вертикальных участков вентиляционной трубы с помощью монтажной траверсы или хомутов. Траверса является опорной деталью, а ограничение боковых перемещений обеспечивается специальными шпильками.
Как правильно собирать?
Перед монтажом воздуховоды собирают секциями длиной не более 15 м. Для стыковки круглых металлических труб используют разный тип соединений:
- фланцевый — крепят воздуховоды между собой способом отбортовки;
- бандажный — применяют полосы листовой стали, специальные мастики для герметизации;
- с помощью муфт и ниппелей — изготавливаются без уплотнительных прокладок и с уплотнителями из резины;
- раструбный — соединяются способом вхождения прямого конца одного воздуховода в раструбный конец другого.
Прямоугольные оцинкованные трубы для вентиляции стыкуют с помощью;
- фланцев — соединяют точечной или обычной сваркой, места сваривания окрашивают огнестойкой эмалью;
- шины — специальной детали из оцинковки в виде угловых вставок.
Теплоизоляция
Устройство теплоизоляции на участках воздуховодов, расположенных снаружи помещения или в неотапливаемых строениях, необходимо для обеспечения бесперебойной работы всей системы вентиляции в целом. В функции теплоизоляции входит:
- предупреждение появления конденсата на наружной и внутренней поверхности труб. Высокий уровень влажности при образовании конденсата приводит к коррозионному повреждению стенок трубопроводов и образованию на них плесени;
- обеспечение противопожарной безопасности. Использование негорючих материалов повышает огнестойкость вентиляционной системы в целом и особенно мест прохода труб для вентиляции через перекрытия и кровлю частного дома;
- ослабление шума и вибрации. Турбулентность воздушного потока, работа вентиляционного оборудования создают вибрацию и акустические эффекты. Слой утеплительного материала снизит уровень шума и вибрацию элементов системы вентиляции.
Теплоизоляцию всех видов воздуховодов, кроме сэндвич — труб, выполняют двумя способами: изнутри и снаружи трубопровода. Применяют для этих целей минеральную или стекловолоконную вату. Для упрочения поверхностных волокон используют термостойкие клеящие составы, не выделяющие токсичных газов при нагреве или возгорании.
Расчет канального нагревателя
Расчет калорифера вентиляции электрического типа производится так:
P
=v* 0,36 * ∆T
здесь v
— объем пропускаемого через калорифер воздуха в куб.м.\час,
∆T
— разница между температурой воздуха снаружи и внутри, которую необходимо обеспечить калориферу.
Этот показатель варьирует в пределах 10 — 20, точная цифра устанавливается клиентом.
Расчет нагревателя для вентиляции начинается с вычисления фронтальной площади сечения:
Аф=
R*p\3600 *Vp,
здесь R
— объем расхода приточки, куб.м.\ч,
p
— плотность атмосферного воздуха, кг\куб.м,
Vp
— массовая скорость воздуха на участке.
Размер сечения необходим для определения габаритов нагревателя вентиляции. Если по расчету площадь сечения получается чересчур большой, необходимо рассмотреть вариант из каскада теплобменников с суммарной расчетной площадью.
Показатель массовой скорости определяется через фронтальную площадь теплообменников:
Vp
=R*p\3600 *Aф.факт
Для дальнейшего расчета калорифера вентиляции определяем нужное для согрева потока воздуха количества теплоты:
Q
=0,278 *W*c(Tп-Tу),
здесь W
— расход теплого воздуха, кг\час,
Тп
— температура приточного воздуха, градусы Цельсия,
Ту
— температура уличного воздуха, градусы Цельсия,
c
— удельная теплоемкость воздуха, постоянная величина 1,005.
Комментариев:
- Для чего необходимо знать о площади воздуховодов?
- Как посчитать площадь используемого материала?
- Вычисление площади воздуховодов
Возможная концентрация в закрытых помещениях воздуха, загрязненного пылью, водными парами и газами, продуктами термической переработки пищи, заставляет устанавливать системы вентиляции. Чтобы эти системы были эффективными, приходится делать серьезные расчеты, в том числе и расчет площади воздуховодов.
Выяснив ряд характеристик строящегося объекта, в том числе площади и объемы отдельных помещений, особенности их эксплуатации и количество людей, которые будут там находиться, специалисты, применяя специальную формулу, могут установить проектную производительность вентиляции. После этого появляется возможность рассчитать площадь сечения воздуховода, которое обеспечит оптимальный уровень проветривания внутренних помещений.